Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.839
Filtrar
1.
Scand J Immunol ; 99(5): e13360, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605547

RESUMO

Myasthenia gravis (MG) is an autoantibody-mediated disease of the neuromuscular junction. Semaphorin 4A (Sema4A) is involved in the activation of T cells in various inflammatory disorders. In this study, we aimed to investigate whether Sema4A is involved in the pathogenesis of MG. We measured serum Sema4A concentrations in 30 treatment-naïve MG patients with acetylcholine receptor (AChR) antibodies, 7 with muscle-specific tyrosine kinase (MuSK) antibodies and 21 normal controls. As a result, serum Sema4A levels were significantly higher in patients with AChR antibody-positive MG and MuSK antibody-positive MG than in controls (p ≤ 0.0001 for both MG groups). Serum Sema4A levels were correlated with AChR antibody levels (Spearman's ρ = 0.39, p = 0.03) and MG Foundation of America clinical classification classes (Spearman's ρ = 0.38, p = 0.04) in patients with AChR antibody-positive MG. In conclusion, high serum Sema4A levels may reflect T-cell activation, and this molecule could be a potential marker of disease activity in MG.


Assuntos
Miastenia Gravis , Semaforinas , Humanos , Miastenia Gravis/diagnóstico , Autoanticorpos
2.
Cells ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607057

RESUMO

Rheumatoid arthritis (RA) is one of the most common autoimmune diseases. Inflammation of the synovial fluid propagates the pathological process of angiogenesis. Semaphorins play a crucial role in the context of endothelial cell function, and their pleiotropic nature has various effects on the further development of RA. This narrative review summarises the various roles of semaphorins in the pathology of RA and whether they could play a role in developing novel RA treatment options.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Semaforinas , Humanos , Inflamação , Líquido Sinovial
3.
Int J Oral Sci ; 16(1): 26, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548747

RESUMO

SEMA7A belongs to the Semaphorin family and is involved in the oncogenesis and tumor progression. Aberrant glycosylation has been intricately linked with immune escape and tumor growth. SEMA7A is a highly glycosylated protein with five glycosylated sites. The underlying mechanisms of SEMA7A glycosylation and its contribution to immunosuppression and tumorigenesis are unclear. Here, we identify overexpression and aberrant N-glycosylation of SEMA7A in head and neck squamous cell carcinoma, and elucidate fucosyltransferase FUT8 catalyzes aberrant core fucosylation in SEMA7A at N-linked oligosaccharides (Asn 105, 157, 258, 330, and 602) via a direct protein‒protein interaction. A glycosylated statue of SEMA7A is necessary for its intra-cellular trafficking from the cytoplasm to the cytomembrane. Cytokine EGF triggers SEMA7A N-glycosylation through increasing the binding affinity of SEMA7A toward FUT8, whereas TGF-ß1 promotes abnormal glycosylation of SEMA7A via induction of epithelial-mesenchymal transition. Aberrant N-glycosylation of SEMA7A leads to the differentiation of CD8+ T cells along a trajectory toward an exhausted state, thus shaping an immunosuppressive microenvironment and being resistant immunogenic cell death. Deglycosylation of SEMA7A significantly improves the clinical outcome of EGFR-targeted and anti-PD-L1-based immunotherapy. Finally, we also define RBM4, a splice regulator, as a downstream effector of glycosylated SEMA7A and a pivotal mediator of PD-L1 alternative splicing. These findings suggest that targeting FUT8-SEMA7A axis might be a promising strategy for improving antitumor responses in head and neck squamous cell carcinoma patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Semaforinas , Humanos , Glicosilação , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linfócitos T CD8-Positivos/metabolismo , Fucosiltransferases/metabolismo , Microambiente Tumoral , Proteínas de Ligação a RNA/metabolismo , Antígenos CD/metabolismo , Semaforinas/metabolismo , Proteínas Ligadas por GPI/metabolismo
4.
Sci Rep ; 14(1): 7082, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528115

RESUMO

FOXA1 is a pioneer transcription factor that is frequently mutated in prostate, breast, bladder, and salivary gland malignancies. Indeed, metastatic castration-resistant prostate cancer (mCRPC) commonly harbour FOXA1 mutations with a prevalence of 35%. However, despite the frequent recurrence of FOXA1 mutations in prostate cancer, the mechanisms by which FOXA1 variants drive its oncogenic effects are still unclear. Semaphorin 3C (SEMA3C) is a secreted autocrine growth factor that drives growth and treatment resistance of prostate and other cancers and is known to be regulated by both AR and FOXA1. In the present study, we characterize FOXA1 alterations with respect to its regulation of SEMA3C. Our findings reveal that FOXA1 alterations lead to elevated levels of SEMA3C both in prostate cancer specimens and in vitro. We further show that FOXA1 negatively regulates SEMA3C via intronic cis elements, and that mutations in FOXA1 forkhead domain attenuate its inhibitory function in reporter assays, presumably by disrupting DNA binding of FOXA1. Our findings underscore the key role of FOXA1 in prostate cancer progression and treatment resistance by regulating SEMA3C expression and suggest that SEMA3C may be a driver of growth and tumor vulnerability of mCRPC harboring FOXA1 alterations.


Assuntos
Fator 3-alfa Nuclear de Hepatócito , Neoplasias de Próstata Resistentes à Castração , Semaforinas , Humanos , Masculino , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Mutação , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Fatores de Transcrição/metabolismo , Semaforinas/genética , Semaforinas/metabolismo
5.
Elife ; 132024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526535

RESUMO

Axon guidance molecules are critical for neuronal pathfinding because they regulate directionality and growth pace during nervous system development. However, the molecular mechanisms coordinating proper axonal extension and turning are poorly understood. Here, metastasis suppressor 1 (Mtss1), a membrane protrusion protein, ensured axonal extension while sensitizing axons to the Semaphorin 3E (Sema3E)-Plexin-D1 repulsive cue. Sema3E-Plexin-D1 signaling enhanced Mtss1 expression in projecting striatonigral neurons. Mtss1 localized to the neurite axonal side and regulated neurite outgrowth in cultured neurons. Mtss1 also aided Plexin-D1 trafficking to the growth cone, where it signaled a repulsive cue to Sema3E. Mtss1 ablation reduced neurite extension and growth cone collapse in cultured neurons. Mtss1-knockout mice exhibited fewer striatonigral projections and irregular axonal routes, and these defects were recapitulated in Plxnd1- or Sema3e-knockout mice. These findings demonstrate that repulsive axon guidance activates an exquisite autoregulatory program coordinating both axonal extension and steering during neuronal pathfinding.


Assuntos
Moléculas de Adesão Celular , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Semaforinas , Animais , Camundongos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Semaforinas/genética , Semaforinas/metabolismo
6.
Cytokine Growth Factor Rev ; 76: 22-29, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38472041

RESUMO

The bone marrow is a haven for hematopoietic and non-hematopoietic cells, creating complex micro-anatomical regions called niches. These distinct niches all participate in an intricate orchestra of cellular interactions that regulates the hematopoietic stem cell and its progenies. In this review, we provide a detailed description of the three most well-known bone marrow niches and their participation in hematopoiesis. We use pre-clinical data, including different in vitro and in vivo studies to discuss how a group of proteins called Semaphorins could potentially modulate both hematopoietic and non-hematopoietic cells, establishing links between the niches, semaphorins, and hematopoietic regulation. Thus, here we provide a deep dive into the inner functioning of the bone marrow and discuss the overarching implications that semaphorins might have on blood formation.


Assuntos
Medula Óssea , Semaforinas , Humanos , Diferenciação Celular/fisiologia , Semaforinas/metabolismo , Nicho de Células-Tronco/fisiologia , Células-Tronco Hematopoéticas , Hematopoese/fisiologia , Células da Medula Óssea
7.
Biomed Pharmacother ; 173: 116385, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460369

RESUMO

Lilii Bulbus (Lilium lancifolium Thunberg) has a proneurogenic effect on the hippocampus. However, its effects on epilepsy and associated pathological features remain unknown. In this study, we investigated the antiseizure effects of a water extract of Lilii Bulbus (WELB) in mouse model of pentylenetetrazol (PTZ)-induced seizure. Mice were injected with PTZ once every 48 h until full kindling was achieved. WELB (100 and 500 mg/kg) was orally administered once daily before PTZ administration and during the kindling process. We found that WELB treatment protected against PTZ-induced low seizure thresholds and high seizure severity. Further, WELB-treated mice showed attenuated PTZ kindling-induced anxiety and memory impairment. Immunostaining and immunoblots showed that hyperactivation and ectopic migration of dentate granule cells (DGCs) were significantly reduced by WELB treatment in PTZ kindling-induced seizure mice. Staining for mossy fiber sprouting (MFS) using Timm staining and ZnT3 showed that WELB treatment significantly decreased PTZ kindling-induced MFS. Furthermore, the increased or decreased expression of proteins related to ectopic DGCs (Reelin and Dab-1), MFS (Netrin-1, Sema3A, and Sema3F), and their downstream effectors (ERK, AKT, and CREB) in the hippocampus of PTZ kindling mice was significantly restored by WELB treatment. Overall, our findings suggest that WELB is a potential antiseizure drug that acts by reducing ectopic DGCs and MFS and modulating epileptogenesis-related signaling in the hippocampus.


Assuntos
Excitação Neurológica , Semaforinas , Animais , Camundongos , Netrina-1 , Pentilenotetrazol , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo
8.
Nat Commun ; 15(1): 2723, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548715

RESUMO

Integration of extracellular signals by neurons is pivotal for brain development, plasticity, and repair. Axon guidance relies on receptor-ligand interactions crosstalking with extracellular matrix components. Semaphorin-5A (Sema5A) is a bifunctional guidance cue exerting attractive and inhibitory effects on neuronal growth through the interaction with heparan sulfate (HS) and chondroitin sulfate (CS) glycosaminoglycans (GAGs), respectively. Sema5A harbors seven thrombospondin type-1 repeats (TSR1-7) important for GAG binding, however the underlying molecular basis and functions in vivo remain enigmatic. Here we dissect the structural basis for Sema5A:GAG specificity and demonstrate the functional significance of this interaction in vivo. Using x-ray crystallography, we reveal a dimeric fold variation for TSR4 that accommodates GAG interactions. TSR4 co-crystal structures identify binding residues validated by site-directed mutagenesis. In vitro and cell-based assays uncover specific GAG epitopes necessary for TSR association. We demonstrate that HS-GAG binding is preferred over CS-GAG and mediates Sema5A oligomerization. In vivo, Sema5A:GAG interactions are necessary for Sema5A function and regulate Plexin-A2 dependent dentate progenitor cell migration. Our study rationalizes Sema5A associated developmental and neurological disorders and provides mechanistic insights into how multifaceted guidance functions of a single transmembrane cue are regulated by proteoglycans.


Assuntos
Glicosaminoglicanos , Semaforinas , Glicosaminoglicanos/metabolismo , Proteoglicanas/metabolismo , Heparitina Sulfato/metabolismo , Movimento Celular , Semaforinas/genética , Semaforinas/metabolismo
9.
Integr Cancer Ther ; 23: 15347354241233544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469817

RESUMO

BACKGROUND: In the era of precision medicine, individual temperature sensitivity has been highlighted. This trait has traditionally been used for cold-heat pattern identification to understand the inherent physical characteristics, which are influenced by genetic factors, of an individual. However, genome-wide association studies (GWASs) on this trait are limited. METHODS: Using genotype data from 90 patients with advanced non-small cell lung cancer (NSCLC) and epidermal growth factor receptor mutations, we performed a GWAS to assess the association between single nucleotide polymorphisms (SNPs) and temperature sensitivity, such as cold and heat scores. The score of each participant was evaluated using self-administered questionnaires on common symptoms and a 15-item symptom-based cold-heat pattern identification questionnaire. RESULTS: The GWAS was adjusted for confounding factors, including age and sex, and significant associations were identified for cold and heat scores: SNP rs145814326, located on the intron of SORCS2 at chromosome 4p16.1, had a P-value of 1.86 × 10-7; and SNP rs79297667, located upstream from SEMA4D at chromosome 9q22.2, had a P-value of 8.97 × 10-8. We also found that the genetic variant regulates the expression level of SEMA4D in the main tissues, including the lungs and white blood cells, in NSCLC. CONCLUSIONS: SEMA4D was found to be significantly associated with temperature sensitivity in patients with NSCLC, suggesting an increased expression of SEMA4D in patients with higher heat scores. The potential role of temperature sensitivity as a prognostic or predictive marker of immune response in NSCLC should be further studied.


Assuntos
Antígenos CD , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Semaforinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Estudo de Associação Genômica Ampla , Temperatura
10.
BMC Neurol ; 24(1): 70, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373967

RESUMO

BACKGROUND: Identification of the causes of stroke of undetermined etiology, specifically cardioembolism (CE) and non-CE causes, can inform treatment planning and prognosis prediction. The objective of this study was to analyze the disparities in thrombus composition, particularly Semaphorin-7A (Sema7A) and CD163, between patients diagnosed with large-artery atherosclerosis (LAA) and those with CE, and to investigate their potential association with prognosis. METHODS: Thrombi were collected from patients who underwent mechanical thrombectomy at two hospitals. The patients were categorized into two groups: LAA and CE. We compared the levels of Sema7A and CD163 between these groups and analyzed their relationships with stroke severity, hemorrhagic transformation and prognosis. RESULTS: The study involved a total of 67 patients. Sema7A expression was found to be significantly higher in the CE group compared to LAA (p < 0.001). Conversely, no statistically significant differences were observed for CD163 between the groups. The presence of Sema7A/CD163 did not show any associations with stroke severity or hemorrhagic transformation (all p > 0.05). However, both Sema7A (OR, 2.017; 95% CI, 1.301-3.518; p = 0.005) and CD163 (OR, 2.283; 95% CI, 1.252-5.724; p = 0.03) were associated with the poor prognosis for stroke, after adjusting for stroke severity. CONCLUSION: This study highlights that CE thrombi exhibited higher levels of Sema7A expression compared to LAA thrombi. Moreover, we found a positive correlation between Sema7A/CD163 levels and the poor prognosis of patients with acute ischemic stroke.


Assuntos
Aterosclerose , AVC Isquêmico , Semaforinas , Acidente Vascular Cerebral , Humanos , Aterosclerose/complicações , AVC Isquêmico/complicações , Macrófagos , Acidente Vascular Cerebral/etiologia , Antígenos CD
11.
Mol Cell Neurosci ; 128: 103920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331011

RESUMO

Synapse formation in the mammalian brain is a complex and dynamic process requiring coordinated function of dozens of molecular families such as cell adhesion molecules (CAMs) and ligand-receptor pairs (Ephs/Ephrins, Neuroligins/Neurexins, Semaphorins/Plexins). Due to the large number of molecular players and possible functional redundancies within gene families, it is challenging to determine the precise synaptogenic roles of individual molecules, which is key to understanding the consequences of mutations in these genes for brain function. Furthermore, few molecules are known to exclusively regulate either GABAergic or glutamatergic synapses, and cell and molecular mechanisms underlying GABAergic synapse formation in particular are not thoroughly understood. We previously demonstrated that Semaphorin-4D (Sema4D) regulates GABAergic synapse development in the mammalian hippocampus while having no effect on glutamatergic synapse development, and this effect occurs through binding to its high affinity receptor, Plexin-B1. In addition, we demonstrated that RNAi-mediated Plexin-B2 knock-down decreases GABAergic synapse density suggesting that both receptors function in this process. Here, we perform a structure-function study of the Plexin-B1 and Plexin-B2 receptors to identify the protein domains in each receptor which are required for its synaptogenic function. Further, we examine whether Plexin-B2 is required in the presynaptic neuron, the postsynaptic neuron, or both to regulate GABAergic synapse formation. Our data reveal that Plexin-B1 and Plexin-B2 function non-redundantly to regulate GABAergic synapse formation and suggest that the transmembrane domain may underlie functional distinctions. We also provide evidence that Plexin-B2 expression in presynaptic GABAergic interneurons, as well as postsynaptic pyramidal cells, regulates GABAergic synapse formation in hippocampus. These findings lay the groundwork for future investigations into the precise signaling pathways required for synapse formation downstream of Plexin-B receptor signaling.


Assuntos
Moléculas de Adesão Celular , Receptores de Superfície Celular , Semaforinas , Animais , Receptores de Superfície Celular/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Mamíferos
12.
J Assist Reprod Genet ; 41(3): 727-737, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38294620

RESUMO

PURPOSE: To identify potential biomarkers and the molecular mechanisms associated with repeated implantation failure (RIF), three microarray datasets, GSE71331 (lncRNA + mRNA), GSE111974 (lncRNA + mRNA), and GSE71332 (miRNA), were retrieved from the Gene Expression Omnibus (GEO) database. METHODS: The differentially expressed mRNAs (DEMs), lncRNAs (DElncRNAs), and miRNAs (DEmiRNAs) between normal control samples (C group) and RIF samples (RIF group) were identified, and then a module partition analysis was performed based on weighted correlation network analysis (WGCNA). Following enrichment analysis of the genes, the lncRNA-miRNA-mRNA interactions (ceRNA) were examined. The mRNAs in the ceRNA network were evaluated using the GSE58144 dataset. Finally, the key RNAs were verified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS: Fifty-three DEmiRNAs, 327 DEMs, and 13 DElncRNAs were identified between the C and RIF groups. According to WGCNA, the magenta module was positively correlated with RIF disease status. The lncRNA-mRNA interaction analysis based on genes in the magenta module revealed the intersecting lncRNAs, including peptidylprolyl isomerase E-like pseudogene (PPIEL) and the testis-specific transcript, y-Linked 14 (TTTY14); these lncRNAs are mainly involved in functions, such as plasma membrane organization. The ceRNA network analysis revealed several interactions, such as TTTY14-miR-6088-semaphorin 5 A (SEMA5A). Finally, SEMA5A and the zinc finger protein 555 (ZNF555) were identified to be significantly upregulated in the RIF group compared with those in the C group in the GSE58144 dataset. The RT-qPCR results aligned with the above results. CONCLUSIONS: Overall, TTTY14, ZNF555, SEMA5A, PPIEL, and miR-6088 could serve as novel biomarkers of RIF.


Assuntos
MicroRNAs , RNA Longo não Codificante , Semaforinas , Masculino , Humanos , RNA Longo não Codificante/genética , Corantes de Rosanilina , Redes Reguladoras de Genes/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Semaforinas/genética
13.
Sci Signal ; 17(819): eadh7673, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227686

RESUMO

The precise development of neuronal morphologies is crucial to the establishment of synaptic circuits and, ultimately, proper brain function. Signaling by the axon guidance cue semaphorin 3A (Sema3A) and its receptor complex of neuropilin-1 and plexin-A4 has multifunctional outcomes in neuronal morphogenesis. Downstream activation of the RhoGEF FARP2 through interaction with the lysine-arginine-lysine motif of plexin-A4 and consequent activation of the small GTPase Rac1 promotes dendrite arborization, but this pathway is dispensable for axon repulsion. Here, we investigated the interplay of small GTPase signaling mechanisms underlying Sema3A-mediated dendritic elaboration in mouse layer V cortical neurons in vitro and in vivo. Sema3A promoted the binding of the small GTPase Rnd1 to the amino acid motif lysine-valine-serine (LVS) in the cytoplasmic domain of plexin-A4. Rnd1 inhibited the activity of the small GTPase RhoA and the kinase ROCK, thus supporting the activity of the GTPase Rac1, which permitted the growth and branching of dendrites. Overexpression of a dominant-negative RhoA, a constitutively active Rac1, or the pharmacological inhibition of ROCK activity rescued defects in dendritic elaboration in neurons expressing a plexin-A4 mutant lacking the LVS motif. Our findings provide insights into the previously unappreciated balancing act between Rho and Rac signaling downstream of specific motifs in plexin-A4 to mediate Sema3A-dependent dendritic elaboration in mammalian cortical neuron development.


Assuntos
Moléculas de Adesão Celular , Proteínas Monoméricas de Ligação ao GTP , Proteínas do Tecido Nervoso , Semaforinas , Camundongos , Animais , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Lisina/metabolismo , Neurônios/metabolismo , Dendritos/metabolismo , Semaforinas/metabolismo , Mamíferos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
14.
Cell Biochem Funct ; 42(1): e3930, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269523

RESUMO

Mammalian sperm remain quiescent but fertile for several weeks in cauda epididymis. Although several sperm quiescent factors of epididymal plasma have been identified in goat, pig and cattle; however, little is known in sheep. In the present study, purification and characterization of a novel sperm quiescent protein of ovine cauda epididymal plasma (CEP) was carried out. The sperm quiescent protein was partially purified by hydroxyapatite gel adsorption chromatography followed by DEAE-sepharose® anion exchange chromatography. In the latter, the sperm quiescent activity was eluted both in 0.05 and 0.2 M potassium phosphate buffer (pH 7.5) fractions having a predominant protein of about 80 and 70 kDa with 87% and 63% homogeneity, respectively. The proteins were designated as motility-inhibitory factor of sheep I and II (MIFS-I and II), respectively. Significant (about 60%) inhibition of sperm motility was observed following treatment of cauda epididymal sperm with 6 and 12 µg/mL of partially purified MIFS-I and II, respectively. Specific activities of the partially purified MIFS-I and II were 563 and 261 U/mg of protein, while the fold-purification of the activity were 5119 and 2373, respectively. Both the proteins were heat-labile and the activity was completely lost following incubation at 100°C for 5 min. Further, the partially purified MIFS-I (5 µg/mL) caused significant reduction in in vitro sperm capacitation and slight decline in tyrosine phosphorylated p72 and p52 proteins; however the protein was nontoxic to sperm. Mass spectrometric analysis of MIFS-I revealed significant identity with human semaphorin 3D. Both dot blot and western blot analysis demonstrated cross-reactivity of MIFS-I with polyclonal anti-human SEMA3D antibody. It was concluded that the MIFS-I of ovine CEP was putative ovine semaphorin 3D protein having potent sperm quiescent and decapacitating activities and it possibly acts through inhibition of protein tyrosine phosphorylation.


Assuntos
Epididimo , Semaforinas , Humanos , Masculino , Animais , Ovinos , Bovinos , Suínos , Motilidade dos Espermatozoides , Sêmen , Anticorpos , Tirosina , Mamíferos
15.
Neoplasma ; 71(1): 1-12, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38295103

RESUMO

Semaphorins are originally described as regulators of nervous system development. Besides, members of the semaphorin family play important roles in the growth, metastasis, and angiogenesis of solid tumors. In contrast to the other semaphorin subclasses, semaphorin class 4 has both membrane-bound and active soluble forms. Soluble class 4 semaphorins in body fluids (blood and saliva) may serve as potential biomarkers for early diagnosis and prognosis prediction of specific cancers. The class 4 semaphorins also transduce signal in cancer cells in a cell membrane-bound form, thereby regulating cancer progression. In solid tumors, class 4 semaphorins can act as ligands in active soluble forms, regulating cancer progression via autocrine and paracrine to activate signal transduction in cancer cells or endothelial cells in the tumor microenvironment. Targeting class 4 semaphorins may be a novel strategy for specific cancer therapy. However, the expression of class 4 semaphorins in solid tumors and the responsive pathogenesis are still controversial. Therefore, this review summarizes the specific expression regulation of class 4 semaphorin members in different types of solid tumors and the mechanisms involved in cancer progression.


Assuntos
Neoplasias , Semaforinas , Humanos , Neovascularização Patológica/patologia , Semaforinas/genética , Células Endoteliais , Neoplasias/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral
16.
Mol Carcinog ; 63(3): 371-383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37975495

RESUMO

Long noncoding RNAs (lncRNAs) are crucial regulators of tumor-initiating cells (TICs) and hold particular importance in triple negative breast cancer (TNBC). Yet, the precise mechanisms by which TIC-associated lncRNAs influence TNBC remain unclear. Our research utilized The Cancer Genome Atlas Breast Cancer (BC) data set to identify prognostic lncRNAs. We then conducted extensive assays to explore their impact on the tumor-initiating phenotype of TNBC cells and the underlying mechanisms. Notably, we found that low expression of lncRNA SEMA3B-AS1 correlated with unfavorable survival in BC patients. SEMA3B-AS1 was also downregulated in TNBC and linked to advanced tumor stage. Functional experiments confirmed its role as a TIC-suppressing lncRNA, curtailing mammosphere formation, ALDH + TIC cell proportion, and impairing clonogenicity, migration, and invasion. Mechanistic insights unveiled SEMA3B-AS1's nuclear localization and interaction with MLL4 (mixed-lineage leukemia 4), triggering H3K4 methylation-associated transcript activation and thus elevating the expression of SEMA3B, a recognized tumor suppressor gene. Our findings emphasize SEMA3B-AS1's significance as a TNBC-suppressing lncRNA that modulates TIC behavior. This study advances our comprehension of lncRNA's role in TNBC progression, advocating for their potential as therapeutic targets in this aggressive BC subtype.


Assuntos
MicroRNAs , RNA Longo não Codificante , Semaforinas , Neoplasias de Mama Triplo Negativas , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , MicroRNAs/genética , Histona-Lisina N-Metiltransferase/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral , Glicoproteínas de Membrana/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Semaforinas/uso terapêutico
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166944, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952827

RESUMO

Sema4D (CD100) is closely related to pathological and physiological processes, including tumor growth, angiogenesis and cardiac development. Nevertheless, the role and mechanism of Sema4D in cardiac hypertrophy are still unclear to date. To assess the impact of Sema4D on pathological cardiac hypertrophy, TAC surgery was performed on C57BL/6 mice which were transfected with AAV9-mSema4D-shRNA or AAV9-mSema4D adeno-associated virus by tail vein injection. Our results indicated that Sema4D knockdown mitigated cardiac hypertrophy, fibrosis and dysfunction when exposed to pressure overload, and Sema4D downregulation markedly inhibited cardiomyocyte hypertrophy induced by angiotensin II. Meanwhile, Sema4D overexpression had the opposite effect in vitro and in vivo. Furthermore, analysis of signaling pathways showed that Sema4D activated the MAPK pathway during cardiac hypertrophy induced by pressure overload, and the pharmacological mitogen-activated protein kinase kinase 1/2 inhibitor U0126 almost completely reversed Sema4D overexpression-induced deteriorated phenotype, resulting in improved cardiac function. Further research indicated that myocardial hypertrophy induced by Sema4D was closely related to the expression of the pyroptosis-related proteins PP65, NLRP3, caspase-1, ASC, GSDMD, IL-18 and IL-1ß. In conclusion, our study demonstrated that Sema4D regulated the process of pathological myocardial hypertrophy through modulating MAPK/NF-κB/NLRP3 pathway, and Sema4D may be the promising interventional target of cardiac hypertrophy and heart failure.


Assuntos
Antígenos CD , Miócitos Cardíacos , NF-kappa B , Semaforinas , Animais , Camundongos , Cardiomegalia/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
18.
Allergol Int ; 73(1): 31-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37635021

RESUMO

Semaphorins were originally identified as guidance molecules in neural development. However, accumulating evidence indicates that 'immune semaphorins' are critically involved in regulating immune cell activation, differentiation, mobility and migration. Semaphorins are also intimately associated with the pathogenesis of allergic diseases including asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, and eosinophilic chronic rhinosinusitis. Interestingly, reflecting their function in positive or negative regulation of immune cells, levels of some semaphorins are increased while others are decreased in patients with allergic diseases. This review presents the pathogenic functions of immune semaphorins in allergic inflammation and discusses the potential use of these molecules as therapeutic targets for allergic diseases.


Assuntos
Asma , Semaforinas , Sinusite , Humanos , Asma/patologia , Inflamação
19.
Colloids Surf B Biointerfaces ; 234: 113691, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070369

RESUMO

SEMA4D-modified titanium surfaces can indirectly regulate macrophages through endothelial cells to achieve an anti-inflammatory effect, which is beneficial for healing soft tissues around the gingival abutment. However, the mechanism of surface-induced cellular phenotypic changes in SEMA4D-modified titanium has not yet been elucidated. SEMA4D activates the RhoA signaling pathway in endothelial cells, which coordinates metabolism and cytoskeletal remodeling. This study hypothesized that endothelial cells inoculated on SEMA4D-modified titanium surfaces can direct M2 polarization of macrophages via metabolites. An indirect co-culture model of endothelial cells and macrophages was constructed in vitro, and specific inhibitors were employed. Subsequently, endothelial cell adhesion and migration, metabolic changes, Rho/ROCK1 expression, and inflammatory expression of macrophages were assessed via immunofluorescence microscopy, specific kits, qRT-PCR, and Western blotting. Moreover, an in vivo rat bilateral maxillary implant model was constructed to evaluate the soft tissue healing effect. The in vitro experiments showed that the SEMA4D group had stronger endothelial cell adhesion and migration, increased Rho/ROCK1 expression, and enhanced release of lactate. Additionally, decreased macrophage inflammatory expression was observed. In contrast, the inhibitor group partially suppressed lactate metabolism and motility, whereas increased inflammatory expression. The in vivo analyses indicated that the SEMA4D group had faster and better angiogenic and anti-inflammatory effects, especially in the early stage. In conclusion, via the Rho/ROCK1 signaling pathway, the SEMA4D-modified titanium surface promotes endothelial cell adhesion and migration and lactic acid release, then the paracrine lactic acid promotes the polarization of macrophages to M2, thus obtaining the dual effects of angiogenesis and anti-inflammation.


Assuntos
Antígenos CD , Células Endoteliais , Semaforinas , Titânio , Ratos , Animais , Titânio/farmacologia , Ácido Láctico , Macrófagos , Anti-Inflamatórios
20.
Ann Neurol ; 95(2): 325-337, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37787451

RESUMO

OBJECTIVE: Genome-wide association studies have identified 1q22 as a susceptibility locus for cerebral small vessel diseases, including non-lobar intracerebral hemorrhage (ICH) and lacunar stroke. In the present study, we performed targeted high-depth sequencing of 1q22 in ICH cases and controls to further characterize this locus and prioritize potential causal mechanisms, which remain unknown. METHODS: A total of 95,000 base pairs spanning 1q22, including SEMA4A, SLC25A44, and PMF1/PMF1-BGLAP were sequenced in 1,055 spontaneous ICH cases (534 lobar and 521 non-lobar) and 1,078 controls. Firth regression and Rare Variant Influential Filtering Tool analysis were used to analyze common and rare variants, respectively. Chromatin interaction analyses were performed using Hi-C, chromatin immunoprecipitation followed by sequencing, and chromatin interaction analysis with paired-end tag databases. Multivariable Mendelian randomization assessed whether alterations in gene-specific expression relative to regionally co-expressed genes at 1q22 could be causally related to ICH risk. RESULTS: Common and rare variant analyses prioritized variants in SEMA4A 5'-UTR and PMF1 intronic regions, overlapping with active promoter and enhancer regions based on ENCODE annotation. Hi-C data analysis determined that 1q22 is spatially organized in a single chromatin loop, and that the genes therein belong to the same topologically associating domain. Chromatin immunoprecipitation followed by sequencing and chromatin interaction analysis with paired-end tag data analysis highlighted the presence of long-range interactions between the SEMA4A-promoter and PMF1-enhancer regions prioritized by association testing. Multivariable Mendelian randomization analyses demonstrated that PMF1 overexpression could be causally related to non-lobar ICH risk. INTERPRETATION: Altered promoter-enhancer interactions leading to PMF1 overexpression, potentially dysregulating polyamine catabolism, could explain demonstrated associations with non-lobar ICH risk at 1q22, offering a potential new target for prevention of ICH and cerebral small vessel disease. ANN NEUROL 2024;95:325-337.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Semaforinas , Acidente Vascular Cerebral Lacunar , Humanos , Estudo de Associação Genômica Ampla , Hemorragia Cerebral/genética , Hemorragia Cerebral/complicações , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/complicações , Acidente Vascular Cerebral Lacunar/complicações , Cromatina , Semaforinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...